Steam generators
Contemporary supercritical steam generators are sometimes referred as Benson boilers. In 1922, Mark Benson was granted a patent for a boiler designed to convert water into steam at high pressure. Safety was the main concern behind Benson’s concept. Earlier steam generators were designed for relatively low pressures of up to about 100 bar, corresponding to the state of the art in steam turbine development at the time. One of their distinguishing technical characteristics was the riveted drum. These drums were used to separate water and steam, and were often the source of boiler explosions, usually with catastrophic consequences. However, the drum can be completely eliminated if the evaporation process is avoided altogether. This happens when water is heated at a pressure above the critical pressure and then expanded to dry steam at subcritical pressure. A throttle valve located downstream of the evaporator can be used for this purpose.
As development of Benson technology continued, boiler design soon moved away from the original concept introduced by Mark Benson. In 1929, a test boiler that had been built in 1927 began operating in the thermal power plant at Gartenfeld in Berlin for the first time in subcritical mode with a fully open throttle valve. The second Benson boiler began operation in 1930 without a pressurizing valve at pressures between 40 and 180 bar at the Berlin cable factory. This application represented the birth of the modern variable-pressure Benson boiler. After that development, the original patent was no longer used. The Benson boiler name, however, was retained.
Two current innovations have a good chance of winning acceptance in the competitive market for once-through steam generators:
A new type of heat-recovery steam generator based on the Benson boiler, which has operated successfully at the Cottam combined-cycle power plant in the central part of England,
The vertical tubing in the combustion chamber walls of coal-fired steam generators which combines the operating advantages of the Benson system with the design advantages of the drum-type boiler. Construction of a first reference plant, the Yaomeng power plant in China, commenced in 2001.
Hydronic boilers are used in generating heat typically for residential uses. They are the typical power plant for central heating systems fitted to houses in northern Europe (where they are commonly combined with domestic water heating), as opposed to the forced-air furnaces or wood burning stoves more common in North America. The hydronic boiler operates by way of heating water/fluid to a preset temperature (or sometimes in the case of single pipe systems, until it boils and turns to steam) and circulating that fluid throughout the home typically by way of radiators, baseboard heaters or through the floors. The fluid can be heated by any means...gas, wood, fuel oil, etc, but in built-up areas where piped gas is available, natural gas is currently the most economical and therefore the usual choice. The fluid is in an enclosed system and circulated throughout by means of a motorized pump. Most new systems are fitted with condensing boilers for greater efficiency. The name can be a misnomer in that, except for systems using steam radiators, the water in a properly functioning hydronic boiler never actually boils. These boilers are referred to as condensing boilers because they condense the water vapor in the flue gases to capture the latent heat of vaporization of the water produced during combustion.