Reactor coolants

Coolants are selected for specific applications on the basis of their heat-transfer capability, physical properties, and nuclear properties. Water has many desirable characteristics. It was employed as the coolant in many of the first production reactors, and most power reactors still utilize water as the coolant. In a boiling-water reactor (BWR; see illustration),the water boils directly in the reactor core to make steam that is piped to the turbine. In a pressurized-water reactor (PWR), the coolant water is kept under increased pressure to prevent boiling. It transfers heat to a separate stream of feed water in a steam generator, changing that water to steam.

Boiling-water reactor. (Atomic Industrial Forum, Inc.)
For both boiling-water and pressurized-water reactors, the water serves as the moderator as well as the coolant. Both light water and heavy water are excellent neutron moderators, although heavy water (deuterium oxide) has a neutron-absorption cross section approximately 1/500 that for light water that makes it possible to operate reactors using heavy water with natural uranium fuel. The high pressure necessary for water-cooled power reactors determines much of the plant design.
Gases are inherently poor heat-transfer fluids as compared with liquids because of their low density. This situation can be improved by increasing the gas pressure; however, this introduces other problems and costs. Helium is the most attractive gas (it is chemically inert and has good thermodynamic and nuclear properties) and has been selected as the coolant for the development of high-temperature gas-cooled reactor (HTGR) systems, in which the gas transfers heat from the reactor core to a steam generator. The British advanced gas reactor (AGR), however, uses carbon dioxide (CO2). Gases are capable of operation at extremely high temperature, and they are being considered for special process applications and direct-cycle gas-turbine applications.
The alkali metals, in particular, have excellent heat-transfer properties and extremely low vapor pressures at temperatures of interest for power generation. Sodium is attractive because of its relatively low melting point (208°F or 98°C) and high heat-transfer coefficient. It is also abundant, commercially available in acceptable purity, and relatively inexpensive. It is not particularly corrosive, provided low oxygen concentration is maintained. Its nuclear properties are excellent for fast reactors. In the liquid-metal fast breeder reactor (LMFBR), sodium in the primary loop collects the heat generated in the core and transfers it to a secondary sodium loop in the heat exchanger, from which it is carried to the steam generator in which water is boiled to make steam.

 

Hosted by uCoz