Quarks

 

     Quarks and antiquarks have never been detected to be isolated, a fact explained by confinement. Every quark carries one of three color charges of the strong interaction; antiquarks similarly carry anticolor. Color charged particles interact via gluon exchange in the same way that charged particles interact via photon exchange. However, gluons are themselves color charged, resulting in an amplification of the strong force as color charged particles are separated. Unlike the electromagnetic force which diminishes as charged particles separate, color charged particles feel increasing force.

     However, color charged particles may combine to form color neutral composite particles called hadrons. A quark may pair up to an antiquark: the quark has a color and the antiquark has the corresponding anticolor. The color and anticolor cancel out, forming a color neutral meson. Alternatively, three quarks can exist together, one quark being "red", another "blue", another "green". These three colored quarks together form a color-neutral baryon. Symmetrically, three antiquarks with the colors "antired", "antiblue" and "antigreen" can form a color-neutral antibaryon.

     Quarks also carry fractional electric charges, but since they are confined within hadrons whose charges are all integral, fractional charges have never been isolated. Note that quarks have electric charges of either +2/3 or −1/3, whereas antiquarks have corresponding electric charges of either −2/3 or +1/3.

     Evidence for the existence of quarks comes from deep inelastic scattering: firing electrons at nuclei to determine the distribution of charge within nucleons (which are baryons). If the charge is uniform, the electric field around the proton should be uniform and the electron should scatter elastically. Low-energy electrons do scatter in this way, but above a particular energy, the protons deflect some electrons through large angles. The recoiling electron has much less energy and a jet of particles is emitted. This inelastic scattering suggests that the charge in the proton is not uniform but split among smaller charged particles: quarks.

 

Fundamental bosons

     In the Standard Model, vector (spin-1) bosons (gluons, photons, and the W and Z bosons) mediate forces, while the Higgs boson (spin-0) is responsible for particles having intrinsic mass.

 

Gluons

     Gluons are the mediators of the strong interaction and carry both colour and anticolour. Although gluons are massless, they are never observed in detectors due to colour confinement; rather, they produce jets of hadrons, similar to single quarks. The first evidence for gluons came from annihilations of electrons and antielectrons at high energies which sometimes produced three jets — a quark, an antiquark, and a gluon.

 

Electroweak bosons

     There are three weak gauge bosons: W+, W, and Z0; these mediate the weak interaction. The massless photon mediates the electromagnetic interaction.

 

Higgs boson

     Although the weak and electromagnetic forces appear quite different to us at everyday energies, the two forces are theorized to unify as a single electroweak force at high energies. This prediction was clearly confirmed by measurements of cross-sections for high-energy electron-proton scattering at the HERA collider at DESY. The differences at low energies is a consequence of the high masses of the W and Z bosons, which in turn are a consequence of the Higgs mechanism. Through the process of spontaneous symmetry breaking, the Higgs selects a special direction in electroweak space that causes three electroweak particles to become very heavy (the weak bosons) and one to remain massless (the photon). Although the Higgs mechanism has become an accepted part of the Standard Model, the Higgs boson itself has not yet been observed in detectors. Indirect evidence for the Higgs boson suggests its mass lies below 200-250 GeV. In this case, the LHC experiments may be able to discover this last missing piece of the Standard Model.

Hosted by uCoz